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ABSTRACT

The suggestion is made that the general particle-wave velocity
equation v Vo c2_ should be taken as a basic postulate of
special relativity, rather than the more limited electromagnetic
WW equation v = Vphase = ¢ that is customarily invoked.
The equation VW = c2 applies to both massive and massless systems,
as does the special theory of relativity itself, whereas the equa-
tion v = V = ¢ applies only to massless systems. Arelativistically-
spimning sphere that exhibits de Broglie's "internal -particle fre- -
quency” w, is described, and its Lorentz transformation properties
are calculated numerically.

Einstein founded the special theory of relativity on the basis of two
postulates, which can be stated as fo]_'lowsl’z:
Postulate 1. The physical laws of electromagnetism and mechanics are

covariant (invariant in form) for transitions from one inertial observer

to another inertial observer.
Postulate 2. The speed of light in empty space has the value c as
measured in all inertial fremes.
However, these two postulates are not on the same footing. Postulate 1 applies
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to both massive particles (which possess rest masses) and massless photons
(which do not), whereas Postulate 2 only applies to maésles's"photpns; -~The
Lorentz equations of special relativity were originally formilated in order

to account for electromagnetic (optical) phenomena. But these equations, which
follow directly from Postulates 1 and 2, also apply to massive particles, where
they give rise (for example) to the relativistic mass increase and the rela-
tivistic dilation of decay times. With the addition of de Broglie particle
waves, the relativistic extension from ele&l:zunagnetic particle-wave systems

to massive particle-wave systems becames complete. Thus it seems desirable to
make the basic postulates of special relativity broad enough to encompass both
types of system, which requires a generalization of Postulate 2.

A precautionary comment shouldbemadehere..Postulatesland2 are
concerned with special relativity and with electromagnetic phenomena (where
special relativity is known to apply). However, de Broglie particle waves are
regarded as a quantum phenamenon. Thus our proposed generalization of the
relativity postulates appears to involve an extension of these postulates into
the domain of quantum mechanics, where the application of special relativity
is much less certain. As a justification for this generalization, we note the
well-known fact, which we outline below, that the particle-wave velocity rela-
tionship W = ¢? is in fact mandated in order to insure the Lorentz invariance

of a particle and its accompanying plane wave irrespective of the nature of
2

the wave. This suggests that the velocity relationship W = ¢“ may in fact

be a purely special relativistic effect, and there are calculational results
which support this viewpoint®.

In line with the above comment, we now review the way in which the Lorentz
equations enter into the invariance of massive particle-wave systems. The counterpart

of @ linearly-moving photon and its accompanying electromagnetic wave is-a linearly-



moving massive particle and its accompanymg de fﬁroglie plane wave. The photon-
wave system leads, via Postulates 1 and 2, directly to the Lorentz equations.
If we similarly require a mas'sive particle-wave system to obey Postulate 1,
then, with a suitable extension of Postulate 2, we are also led to the Lorentz
equations. We can demonstrate this result by applying the Lorentz equations
to the particle-wave system, as is done for example in Méller's booku, and
then examining the consequences. Consider a massive par'tic;e p and its
associated plane wave ¥ that move with colinear velocities v and V, respec-
tively, in an inertial frame S. We assume for s:i.mi)l:'i..city that the veloecity
vectors3and'V’1ieJ'nthex,yplane, with each vector inclined at an angle 6
to the x axis. Iheplmewavecaﬁbewritteninthefom

¥ = A cos 21F, F = v{t - (x cosd + y sin6)/V}, | (1)
where v is the frequency of the wave. The phase F is an invariant in all
:ina:'tialframesu. Wenextcmsiderpa:ﬂlllasviewédinaframeofrefmce
S' that is moving with velocity u in the x direction with respect to S. By
applying the Lorentz transformation law of velocities to the particle velocity
¥ and the lorentz coordinactetransformationstoﬂmewavephasef-‘,wecanestab-'
lish relationships between the unprimed (S) and primed (S') quantities for
p and ¢. This pmcedureu gives the following equations, first for p:

tan8' = sinB/y(cos® - u/v), (2)
v' = v{l - 2u cosb/v + ui/v® - uzsinze/cz};i/(l - uv coselcz); 3
and then for y:
tand' = sind/y(cosh - uV/c2), ' )
V! = (V - u cos0)/{1 - 2uV c:oselc2 + u2V2/c"t - uzsinze/cz}!!, (5)
v' = yv(1 - u cos8/V), (6)

where vy = (1 - u2/cz)';i. If we now set v = c2/V, the particle transformations



of egqs. (2) and (3) become identical with the wave transformations of egs.
(4) and (5). Thus a particle-wave system is Lorentz invariant if and only
if the particle and wave have the velocity relationship

| w=2c2. (7
Hence if eq. (7) is valid for particle-wave systems, then the Lorentz equations
are mandated in order to satisfy Postulate 1. But eq. (7) is in fact a general
result that emerges directly from the Planck quantization equation and the
de Broglie wavelength equation. We can write these two equations as follows:

E (particle) = Tw (wave), ' (8

p (particle) = WX (wave), (9)
where (E,w 1) and (p,X) are canonical sets of variables. Dividing eq. (8) by
eq. (9), we obtain '

E/p (particle) = ¢/v = uX (wave) = V, 10
so that the velocity relationship W = o2 follows immediately as a rigorous
result for all particle-wave systems (massive or massless). This leads in turn
to the result that the Lorentz equations are required for all particle-ﬁve
systems (massive or massless) in order to obtain compliance with Postulate 1.

On the basis of these results, we conclude that Postulate 2 should be
generalized as follows:
Postulate 2'. The particle-wave velocity product in empty space has
thevaluevV=c-2asmeasm'edJ‘nalliner'tialframes;
This generalization of the postulates changes nothing mathematically in the
special theory of relativity, but it serves to highlight some of the uﬁderlying

physical concepts. For example, it indicates the now-well-recognized fact
that the particle-wave duality has the same physical reality for both massive
and massless systems. Also, it draws attention to de Broglie's "internal



particle frequency" W, which is often overlooked in discussions of special
relativity, and which we now briefly consider.

The basic relativistic distinction be'tween massive and massless particles
is that the former have rest-frame representations whereas the latter do not.
In fact, one of the big advantages in dealing with massive particles is that
we can mathematically transform from the laboratory freme of reference into
the rest frame of the particle. When we do this, the wave frequency w becomes
transformed into the ‘internal particle frequency w = w/y, where y = (1 - v2/c2)';5.
This suggests that the frequency w, should be accorded physical reality. Fur-
thermore, when we tr'ansform back into the laboratory freme of reference, we
not only recover the frequency w of the particle wave, but we also obtain a
frequency uy = moly for the particle itself that arises from time dilation.
The frequency w Figured prominently in de Broglie's calculations®, and he
demonstrated that if a linearly-moving particle p(v,mp) and wave Y(V,w) are
initially in phase, they remain in phase. This indicates that the particle
is in fact the gena'ator-.of the wave. Extending these ideas to include cir-
cular orbits, de Broglie obtained the Bohr' omb::l:alquarrtlzationmle. '

The above discussion leads to the following set of relativistic equations

for a particle p(v,mp,ip) and its associated wave P(V,w,X):

= 02/V 9
y o 2 W, =me /h
W =w/y =y (11)
p ° 2 -y = QA - v2/c2)'35
XP = (y" - 1)

Since these equations are in essence anchored on the rest-frame frequency w
together with the requirement of relativistic invariance for p and ¥, a crucial
task for relativists is to identify the frequency W, with known rest-freme
properties of a particle. We now describe a prototype particle model, the
relativistically-spinning sphere, that properly exhibits the frequency W, -



We start with a spinning sphere in a (non-rotating) rest frame So, and

we assign it the Campton redius
R=%/mc . ' (12)

Weﬁntherassmnethatthesphaeisspimﬁngattheﬁ‘equencymoshovmin
Eq. (.ﬁj_','so that its equator is moving at (or infinitesimally below) the
limiting velocity c. Thus the total energy of this spinning sphere is
E_ = mocz = /R = hy . The spinning motion produces changes in the initially
uniform mass distribution of the sphere. These mass changes can be attributed
either to the instantaneous velécities v of the mass elements of the sphere -
as calculated in special relativity, or, equivalently, to the effective gravi-
tational potential that operates in a rotating systern6 In either case, they
cause a rotating circular ring of matter of redius T to have an effective

spimming mass
mg = m:'o/ (1- vli/cz);s = mzol 1 - mgr;/cz);i ’ (13)

w}m:emzis tl-iemassoftherfmgasobser'vedinso, andmzo is the rest mass.
Integration of these mass elements over the volume of the sphere gives the
sp:ixmingmassmo= 3/2 m It also gives the spinning moment of inertia
I=3mm R =%mR. This is a key result, because it leads to the calou-
lated spin angular momentum J = Iu =35m°R2m.°=!5h. If a unit electric charge
e is placed on the spinning sphere and allowed to move freely, it will be
magnetically forced to the equator, where it gives rise to a magnetic moment
(in c.g.s. units) M, = 1rR2°i = 1I'R2°e/0°(no/21l' = eh/2moc. Thus we see that the
rest-frame frequency w_ in Eq. (11), which was merely postulated by de Broglie 5
caninfac‘lfbedirectlyrelatedtobdthﬂ:esﬁinandmagneticnmmrtofthe
particle via this spatially-extended spinning sphere model.”

One test that can be applied to this relativistically-spinning sphere
is to see if the mass m spin J, and magnetic mament u tranform properly



fram the rest frame So into the laboratory frame Sg- In Newtonian physics,
these three quantities would be invariant. However, experimentally we require
(mo,J,uo) in 8, * (ymo,J,uoly) in Sy » (14)

8

where the relativistic parameter y reflects the particle velocity in Sz. As
observed relativistically in S,, the spinning sphere is quite distorted, with
a non-uniform azimrthal mass distribution (except for spin orientations along
the line of motion), and with a non-spherical shape. Thus its overall trans-
formation properties cannot be obtained analytically. However, they can be
determined numerically. In order to accamplish this, we carried out the fol-
lowing calculation. The sphere was represented as a collection of approximately
20,000 discrete spatial elements®. Each element was assigned mass, coordinate,
and velocity values in So. The equatorial spatial elements were also assigned
fractional electric charges whose total added up to the unit charge e, so that
they formed a representation of the equatorial current loop described above.
The element mass valueswerefixedbynﬁtc‘rﬁngﬂ'lespimﬁngmassmo of the
sphere to its Compton radius (Eq.12). ‘The spin angular momentum J and magnetic
moment W in So were then mumerically calculated, giving the absolute values
J=%h and u = e’h/2m°e, in agreement with the above discussion. Next, a
Lorentz transformation was individually applied to each of the spatial elements,
and its contribution to the mass, spin, and magnetic moment were recalculated
:inﬂxelaboratoryframe-szas functions of the particle velocity R = v/c and
the spin orientation angle 6 (in the rest frame So) relative to the line of
motion. By sumning over the contributions of these 20,000 spatial sphere
elements, we obtain relativistically-accurate lab-frame values for the mass,
spin, and magnetic moment of this spatially-extended spinning and moving sphere.
In order to more fully understand the workings of the Lorentz transformation
process for extended spinning objects, we added one additional feature to these



numerical calculations.. The Lorentz transformation involves both a coordinate
transformation (the relativistic contraction of length along the line of motionl .
and a velocity transformation (the relativistic velocity addition law). To
separate these two relativistic effects, we carried out calculations for three
different cases: (1) a relativistic coordinate transformation, with a non-
relativistic (Newtonian) velocity transformation (with mass values held constant);
(2) a non-relativistic coordinate transformation’ (no foreshortening), with a
relativistic velocity (and mass) transformation; (3) a fully relativistic -
Lorentz transformation. Cases (1) and (2) are of no direct physical significance,
but they delineate the mamner in which the Lorentz equations operate for a
spatially-extended particle. The results of these calculations are summarized

in Table I.

As can be seen in Table I, the mass of the spinning sphere is correctly
transformed. However, the spin angular momentum and magnetic moment are cor-
rectly transformed only for a spin angle of 0°, and are transformed with approxi-
mate accuracy at non-zero spin angles. At these non-zero angles, the relati-
vistic coordinate and velocity contributions to the spin transformation are of
opposite signs and are almost equal to one another, so that the resultant spin
angular momentum is approximately constant, as required experimentally. The
relativistic coordinate and velocity contributions to the magnetic moment
transformation, on the other hand, are of the same sign, and they cambine
together to give approximately the correct 1/yY dependence for the magnetic moment.
The mass transformation of course depends only on the relativistic velocity
transformation. In spite of the approximate nature of these results, it seems
plausible to conclude that the Lorentz transformations uniquely reproduce the
relativistic transformation properties of a spatially-extended massive spimning
particle, as embodied in Eq. (A4).



The Lorentz equ&tions were originally devised in order to account for the
invariance properties of electramagnetic phenomena, as summarized in .Postulates.:
1 and 2. However, thesesameequactionsarereqdredinord@'-torepmdmethe
invariance properties of a massive free particle and its associated plane waveu,
as summarized in Postulatesland 2'. Furthermore, these lorentz equations are
needed in order to obtain the proper spectroscopic transformation properties
of a spinning particle, as given in Eq. (14). Thus the Loventz equations are
intimately related not just with electromagnetic phenomena, but also with all
aspects of massive particles and their associated waves.® This suggests that
relativity theory should be formulated so as to naturally include both massless
and massive particles, which is an argument in favor of Postulates 1 and 2'
rather than sub~Postulates .1 and 2 as the basic tenets of special relativity.

In order to give a physical meaning to the de Broglie internal particle
frequency W, which serves as the cornerstone for the relativistic relationships
sumnarized in Egs. (11), we invoked a specific model: the spatially-extended
relativistically-spinning sphere. This spinning sphere reproduces the standard
rest~frame quantities R = '.hlmoc, Eo = hmo = m°c2, J=%"h, and M, = eh/2m°c,
and it properly transforms ms J, and My (a1l of which depend on mo) into the
laboratory frame of reference. Thus it is apparent that a spatially-extended
particle is consistent with the dictates of special relativity. It also seems
clear that the constraints listed here are sufficient to essentially uniquely
determine the parameters of the model. Planck’s constant h, which is the
characteristic feature of the equacéions of quantum mechanics, enters here via
'tl'xeCcmptonradiusR=h/mocasthe empirical ratio between the mass and radius

of an elementary (non-composite) spin % particle.
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Table I. Calculated transformation properties of the relativistically-
spinning sphere. 'I’herelativisticmassmo, spin angular momentum J = % 1, and
magnetic moment u§ = eh/Zmoc are first calculated in the rest frame 5o using
20,000 discrete spatial elements to répresen‘t the sphere. Then a series of
relativistic (R) and Newtonian (N) trensformations to the lab frame S, are made
for each of these elements, as discussed in the text. The results are quoted
here as percentage changes from the rest-frame values. 0 is the angle between
the spin axis and the direction of motion, and B is the relative particle velo~
city in Sg- The "exp" values shown here for comparison purposes are from Eq. (14).

_ Traensformations . .
B = v/e 0 Coard. Velocity Mass Spin Magnetic moment
N N 0.00%8  0.00% 0.00%
0.3 0° R N 0.00% 0.00% 0.00%
N R +4, 83% 0.00% -4.61%
R R +4,83% 0.00% -, 61%
30° R N . 0.00% ~0.58% -0.58%
R R +1t. 83% +0.02% -14.69%
60° R N 0.00% -1.73% -1.73%
R R +14,83% +0.08% -1, 8%
90° R N 0.00% -2.31% -2.31%
N R +14.83% +2.140% -2.65%
"exp" +'+. 83% . 0- 00% -'""0 61%
0.7 30° R N 0.00% -3.57% -3.57%
N R +40.03% +4,99% -26.88%
R R +40.03% +1.42% -29.51%

"&P" +I'|‘0- 03% 0- 00% -280 59%
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